

 State of Indiana

 DMPP 2020 - Specifications

 Message Header Processing in the

 Law Enforcement Environment

 using the

 Datamaxx Message Processing Protocol

 (DMPP-2020)

 Foreword

This document is meant to offer a brief discussion of the benefits of utilizing

this protocol within Law Enforcement systems. This protocol has been chosen as

the mechanism to provide compliance with national standards while also
providing

an environment that is not burdensome for regional/remote systems to
implement.

Control Terminal Agencies (CTA) within each State must deploy systems that

comply with the requirements of national agencies such as NCIC and NLETS.
Some

of these requirements are listed below:

· Implementing a protocol that provides guaranteed message delivery

· Identification of users responsible for transactions

· Ability to process transactions that meet national standards

· Ability to process image data

All of these requirements are implemented in the system with this protocol.

DMPP 2020 is an application to application protocol which guarantees delivery of

messages. The CTA must be able to determine the individual operator
responsible

for any message that traverses through the system. The OpenFox™ system as

implemented in conjunction with the DMPP 2020 protocol and the inclusion of the

user-id field achieves this requirement. The system supports all standard NLETS

and NCIC 2000 transactions. In addition, the system using will also be able to

process images. DMPP 2020 is one of the solutions that provides the framework

required to process binary data.

In addition to the national standards the CTA has an obligation to provide an

environment to regional systems which is consistent and can be implemented
with

a reasonable amount of effort while using state-of-the-art protocols and network

facilities. The DMPP-2020 protocol as implemented in the OpenFox™ system

provides such an environment.

The DMP2020 portion of this document was written by Datamaxx Applied
Technologies

and describes the protocol. The remainder of the document has been written by

Computer Projects of Illinois, Inc., and is meant to offer further details and

message format examples. This document will be updated at a later date with

specific examples for your implementation.

 MESSAGE HEADER PROCESSING

 IN THE

 LAW ENFORCEMENT ENVIRONMENT

 USING THE

 DATAMAXX MESSAGE PROCESSING PROTOCOL®

 DMPP-2020®

 Technical Specification

 Published By:

 DATAMAXX APPLIED TECHNOLOGIES, INC.

 3780 PEDDIE DRIVE

 TALLAHASSEE, FLORIDA, 32303

 (850) 575-1023

http://www.datamaxx.com

Revision Levels:

Revision 0, August 1996

Revision 1, October 1996

Revision 2, June 1997

Revision 3, September 1997 (Registered Copyright – TX 4-624-223)

Revision 4, September 1997

Revision 5, September 1998

Revision 6, July 2000

This document contains proprietary information and trade secrets, and
may

only be disclosed by written permission of Datamaxx Applied
Technologies, Inc.

"Datamaxx Message Processing Protocol" and "DMPP-2020" are registered
trademarks

of Datamaxx Applied Technologies, Inc. Other product names used within this

document are the trademarks of their respective holders and are hereby

acknowledged as such.

 ©1996 – 2000 DATAMAXX Applied Technologies, Inc.

 All Rights Reserved

No portion of this document may be reproduced, by any means without the
express

written permission of the copyright owner.

Printed in the United States of America

Introduction.

The purpose of this paper is to define a specification that can be implemented

to provide robust message handling in the Law Enforcement Environment.

As the transition to modern communications protocols continues, new problems

and challenges are presented to developers. This is especially true with "Open

Systems", in which there are components from various vendors, all of which
must

operate in harmony.

With legacy systems, one vendor had control of processing, from the end user

keyboard to the host system and thus could control all standards, and could

implement necessary functionality to ensure that all messages were delivered

reliably.

With "Open Systems" and diverse vendors, functionality tends to be implemented

as a series of layers, with information being passed up and down between layers.

Complicating this is that fact that the layers may be implemented as a series

of disparate free running processes, in which data is passed back and forth.

Thus, an application may send data through several layers and processes about

which it has no knowledge. Each process or layer may acknowledge to the
previous

process or layer that the data was successfully processed -- however error

messages are often not communicated to previous processes, the chain, and thus

the originating application may not be aware of an error. Thus the need for

"application to application" or "end to end" acknowledgment.

Complicating the situation is that "Open Systems" are truly open, as they are

designed to allow easy interconnection. This immediately provides points of

access that can be used for unauthorized or abusive use of a system.

A further factor is that new protocols are "peer to peer" and do not provide a

continuous status monitoring (as is the case with "master slave" type protocols).

This can lead to situations in which an application can send a message to a

destination that can not process it. Since there is no immediately available

status, error indications may not be provided for several minutes (or at all)

and the sending application will not be aware of the situation.

Consider the following scenario:

 1. Host prepares a message for transmission.

 2. Host passes the messages to Communications sub-system.

 3. Communications sub-system passes message to communications

 controller.

 4. Sub-system sends message immediately to destination, but is not

 aware if any intermediate devices (e.g. bridges or routers) are

 inoperative.

 5. Remote communications processor receives message,
acknowledges

 it and places it in a buffer.

 6. Remote application crashes before reading buffer, or operator

 powers system off.

In this scenario the host application would consider that the messages has been

correctly processed, when indeed it was not. Furthermore, many messages may

have been sent and buffered for a remote application that never processes them.

There are also many other potential points of failure that can leave the host

in a state assuming a message was delivered, when it was not actually delivered.

In order to eliminate these potential points of failure, a structure must be

defined that can be used universally. The approach defined herein uses a

"Message Header" processing to achieve full end to end confirmation of all

messages.

The processing strategy is known as the "Datamaxx Message Processing Protocol

(DMPP-2020®)"

Concepts

In developing the message header processing, many factors were considered.

These include:

 Compatibility with NCIC designs

 Compatibility with State designs

 Full message delivery confirmation

 Communications Protocol Independent

 Applicable to all processing platforms

 Programmer friendly

 Support for security issues

 Support for data encryption

 Features can be configured to meet different requirements

 Flow control is automatically provided to avoid flooding of a target

 system

The design that evolved, after much research, involves the implementation of a

special header in each message packet. This header contains control fields that

can be used to provide all functionality, as needed. The header can also be

defined as "optional" in order to allow remote systems to be converted as

available, rather than requiring a "big bang" conversion.

This header will be referred to as the "Extended Message Header"

throughout this paper.

A discussion of each of the concepts is warranted, in order to provide

background and rational for the design.

Compatibility with NCIC designs

This design leverages off the structure proposed for the NCIC-2000 system, in

order to reduce research and development time. It is not though, an exact copy

of the NCIC structure.

< State with>

This design allows the Extended Message Header to be placed in front of existing

message formats, with no requirement to change those formats. This alleviates

the requirement to modify existing processing applications.

Full Message Delivery Confirmation

The Extended Message Header provide both positive and negative

confirmation of message delivery. For negative delivery confirmation a reason

code is provided.

Communications Protocol Independent

Although the obvious protocol that this specification can be applied to is

TCP/IP, it is actually protocol independent. It can operate on any

binary transparent protocol, ranging from serial links (e.g. mobile

communications via CPDP IP packets) to mainframe protocols (e.g., LU 6.2).

Applicable to all Processing Platforms

This design is compatible with all processing platforms. This is

achieved by careful sizing and alignment of all data fields, in order to avoid

alignment and size specification errors that are generated by some processors.

Programmer Friendly

The design guards against assumptions made by various compilers. For example,

some compilers will automatically initialize data structures to null values,

or just plain junk. This can lead to subtle processing flaws. Thus this

specification does not allow any command, directive or response code that is

all null values, and requires that all values be verified. It is also

programming language independent. All Extended Message Header processing is

symmetrical with respect to direction (inbound and outbound).

Support for Security Issues

The Extended Message Header provides for full authentication of all connections,

including dynamic re-verification of connections at random intervals.

Support for Data Encryption

The Extended Message Header provides for full encryption of the data portion of

messages. This allows a full software solution to be implemented, independent

of all communications hardware. Dynamic key update and control is supported.

Features can be Configured to Meet Different Requirements

The features can be configured to meet the needs of a specific system. For

example, the Extended Message Header can be implemented using a few of it

capabilities and then more features can be activated as required.

Levels of Implementation

The specification can be implemented as "levels of service", depending on what

options are selected. Thus it can be adapted to many different needs and

environments.

Flow Control

The Extended Message Header can provide a natural flow control, if desired by

the implementer.

Extended Message Header

The Extended Message Header is a structure that is inserted in a cleanly

delineated message block. The general structure of the message block is as

follows:

 STAP 4 character start pattern

 Block Length 32 bit signed integer (See note below)

 Header Extended Message Header (Defined in Section
4)

 Data Variable length data

 STOP 4 character stop pattern

Note: The Block Length field encompasses the whole packet, including

the STAP (Start Pattern), Block Length field itself, Extended Message Header,

data (if any present) and the STOP (Stop Pattern).

For consistency across platforms, all values in the header are stored in

"Network Byte Order". This order places the most significant byte first,

descending to the least significant byte reading to the right. This is contrary

to method used on some Intel platforms (notably the 80X6 family) and thus the

implementation must handle this situation as required.

Definitions

The "STAP" (Start Pattern) and "STOP" (Stop Pattern) are currently defined as

hexadecimal patterns as follows:

 STAP ff,00,aa,55 (\xff\x00\xaa\x55)

 STOP 55,aa,00,ff (\x55,\xaa,\x00,\xff)

The minimum block size is 28 characters, which can occur when the Extended

Message Header length is 16 and there is no data present. The maximum block

size is 2,147,483,647 (231 – 1). Thus, the value of the Block Length field

must never be less than 28 or more than 2,147,483,647.

Extended Message Header Format

The Extended Header Message has the following required format:

 Header Length - 16 bit signed integer

 Function Code - 16 bit signed integer

 Validation Field - 32 bit unsigned integer

 Data Length - 32 bit signed integer

 Status Code - 16 bit signed integer

 Destination - 16 bit signed integer

The Extended Header Message has the following optional extension for
encryption:

 Length - 16 bit signed integer

 Request Type - 16 bit signed integer

 Key Id - 32 bit unsigned integer

In the following charts, all numbers are expressed as decimal integers. They

can be converted to other number systems (e.g., octal or hex) as required.

Note how the use of zeros is consistently avoided.

Each field is discussed in detail, as follows:

Header Length

The length is a 16 bit integer that encompasses all the header data, including

the length field. It will be either 16 or 24, depending on whether or not an

encryption control is present.

Function Code

The Function Code defines the processing path of the message. Currently defined

values include:

 1 - Data message with no acknowledgment, final
block

 2 - Data message with acknowledgment, final
block

 3 - Data message with no acknowledgment, more
blocks

 to follow (See note below)

 4 - Data message with acknowledgment, more
blocks to

 follow (See note below)

 17 - Positive acknowledgment to data message
(Status

 Code is set to "Successful receipt of

 data message")

 18 - Negative acknowledgment to data message
(Error

 is defined in the Status Code field)

 33 - Request status of system

 34 - Response to status request (Status is defined

 in the Status Code field)

 49 - Send Coded Message 1

 50 - Send Coded Message 2

 65 - Positive response to Coded Message 1

 66 - Positive response to Coded Message 2

Note: Function Codes 3 and 4 are used to indicate that the message will

be sent in multiple blocks with Function Codes 1 and 2 used to indicate the

last block. Each block in such messages must use successive values in the

validation field.

Validation Field

This unsigned integer field defines a number that is used to create a unique

identification for each message, and will be returned on its corresponding

acknowledgment. Its format is up to the implementer. This value may be all

zeros, as it is not inspected but simply returned to the requester intact.

Data Length

This field defines the length of the actual data portion of the message. It is

used for redundancy checking. It must be zero for status and status response

messages. The maximum value is 2,147,483,619 (231 – 1 – 28).

Status Codes for Request Messages

This field contains the status code that can be included in request messages.

Currently defined values include:

 01 - Message may contain binary object in Unisys
format

 02 - Message doesn’t contain binary object

 03 - Message contains binary object in NCIC

 transaction format

 04 - Message contains binary object in NCIC
response

 format

 05 - Message contains binary object in DSEO-2020
format

 06 - Message contains binary object in Unisys
format

 33 - Message may contain binary object in Unisys
format

Note: Any message that can contain a binary object in any of the

supported formats can contain multiple binary objects but they must all be in

the same format.

Status Codes for Response Messages

This field contains the status code that can be returned in responses. They

should be used only with responses -- never part of request messages (i.e.,

status codes are not "piggybacked" onto a request).

The code returned will depend on the type of request received, (e.g., a write

request with acknowledgment, or an explicit request for status). Currently

defined values include:

 01 - Successful receipt of data message

 17 - Permanent (i.e., non recoverable) error
occurred

 (e.g., disk failure)

 18 - Temporary (i.e., recoverable) error occurred

 (e.g., printer out of paper)

 19 - Logical error occurred (e.g., too many
messages

 received too quickly, and thus a queue

 containing acknowledgments filled up)

 20 - Message length exceeds maximum, message
will be

 discarded

 33 - Queried destination is available and ready

 34 - Queried destination is available, but not ready

 (e.g., printer has buffer space, but is

 out of paper)

 35 - Queried destination is not available and not
ready

 49 - Invalid function code received

 50 - Invalid (or non-existent) destination received

 51 - Invalid Extended Message Header format (or

 length) received

 52 - Function not supported

 65 - Attempt to start encryption with no key

 definition

 66 - Invalid encryption header format (or length)

 received

 67 - Encryption not supported.

Destination

This 16 bit integer defines a logical destination. This permits a packet to be

addressed to different logical units, and effectively creates a "cluster" at a

location. The actual definition is up to the implementer and the configuration.

This permits logical units to be defined for specific purposes (e.g., a

destination for "Hit Confirmation" messages), and permits implementation of

message priorities. The value of 0 is invalid. The value of "-1" is considered

a broadcast to all defined destinations.

Encryption Header Length

This 16 bit integer defines the length of the optional encryption header. A

length of zero is invalid.

Encryption Request Type

This 16 bit integer defines the encryption function requested.

 Currently defined values include:

 1 - Start encrypting messages

 2 - Stop encrypting messages

 17 - Load encryption Key

 18 - Clear encryption key

 33 - Set key identification

Key Identification

This 32 bit integer defines the index into the key table to locate the key to

be used for encrypting future messages.

Service Levels

The DMPP-2020™ specification allows for service levels. A service level defines

that functionality that has been activated for a given endpoint on a

communications network.

The following service levels are defined.

· Level 1 provides the functionality for handling message header

 functions from 1 through 47 (as they may be defined). This functionality

 encompasses guaranteed delivery of messages and full status checking,

 but does not include authentication or encryption.

· Level 2 provides the functionality as described in Level 1 and adds the

 functionality for system authentication (function codes 49 through 79, as

 they may be defined).

· Level 3 provides the functionality as described in Level 2 plus adds the

 encryption options via the extensions for encryption.

Implementation Notes

The following notes are presented to give an insight into how the Extended

Message Header may be applied to various functions.

Integer Values

In this specification all integers are positive signed values, unless otherwise

noted.

Destination Codes

The destination field does not have to replace existing header structures. It

is meant to augment them. This technique permits many logical units to be

addressed by a single Host address (e.g., a single TCP/IP address). This

eliminates large control tables, and their associated maintenance (e.g., holes

in firewalls). The application may still process existing headers (e.g., those

used on a BiSync 2780 line).

Flow Control

By use of the "Write with Acknowledge" function, flow control may be achieved.

The application can be structured to allow any number of messages to be

outstanding at any time, subject only to the limits of the receiver. If the

limit is set to 1, automatic flow control is achieved.

Keep Alive Timer

This implementation provides full keepalive support, at the application level.

A keepalive probe is a packet with a Request Status Function code and no data

length. If an appropriate Response to Status Request is returned, then the

connection is intact. Note that this can also be used to temporarily suspend

traffic by responding with a Status Code 34 (temporarily unavailable).

Coded Messages

Coded messages are used to authenticate connections. Their use is specific, as

follows:

A Session requesting a connection provides a predictive string of data (e.g.,

a logical name) and encodes it in such a way that the receiver can decode it.

This can be done by using a known element (e.g., System Name, Date, circuit

number, telephone number, etc.) and encoding it using a Huffman coding, or

other encoding process. It sends it as a Coded Message 1 Function to the

receiver.

The receiving session encodes a similar string (that is why it must be

predictive) and compares it to the received string. If a match is found, a

response code of 65 is sent, with no data. If no match, the receiver is silent

(Why tell the crook how he failed).

Either side of the session may send a Coded Message 2 request at any time. The

Coded Message 2 has a random data string as its data portion. The receiver then

adds another predictive string of data to the coded data, re-encodes it and

returns it as a response of code 66 to the sender.

The sender of the Coded Message 2 analyzes the response. If valid, processing

continues (there is no response). If invalid, the connection is terminated,

due to suspected invasion of the system.

The exchange of Coded Message 2 functions may occur at any time, thus
creating

a” keep-alive”, as well as continually re-authenticating connections.

The encoded data in the Coded Message 2 may also be used as the encryption
key,

by inserting the optional encryption header.

Encryption Functions

The encryption functions are implemented implicitly. The presence of the

optional encryption header defines an encryption function. If a Write Data

function is performed with the encryption header, and the header defines a key

load, then the data portion of the message is assumed to be the new key. This

is consistent with the concept of loading the Coded Message 2 data as the key.

The encryption header will only require that the Key Identification field be

present for the "Set Key Identification" function. It will be ignored for other

functions. The length field must always be correct, though.

The "Set Key Identification" is used for systems that do not want to exchange

actual keys as data, but prefer to keep a table loaded at a site. In that case,

the key id is the index into the table.

Note that this does not speak to the encryption algorithm actually used. The

algorithm strategy must be defined by the implementer.

Configuration Control

The features listed may be made configurable. For example, some systems may

not support encryption, while others may allow many messages to be queued

before acknowledgment. Other systems may require coded messages. These
should

all be implemented via service levels, not by specific option enabling

techniques.

Precise Error and Status Reporting

The response codes permit isolation of errors clearly and cleanly. For example,

there are codes for both "Invalid Function" and "Unsupported Function".

This permits an interface to query a peer interface to determine what level of

functionality is supported.

Current OpenFox™ Implementation

This section of the specifications is meant to provide practical examples for

the implementation of the DMPP-2020 protocol in the OpenFox™ environment.
The

following section will document the specific technique which OpenFox™ uses to

provide reliable, binary object capable communications. The OpenFox™ system

embraces the widely accepted standards of communication put forth in the NCIC

and NLETS TCP/IP specifications and therefore implements DMPP-2020 in a
manner

complying with these national standards. The OpenFox™ system currently

implements DMPP-2020 service level 1. The system uses the application

level acknowledgments to reliably deliver messages, as well as the status

checking function to implement an idle line timer. The OpenFox™ system

requires the segmentation of large messages and an indication of which, if any,

message segments contain image data. The OpenFox™ system will require client

data messages to present images in the DSEO-2020 format. The OpenFox™
system

does not use the authentication or encryption functions specified in service

levels 2 and 3 at this time.

Message Header Fields

There are six fields in the extended message header, which are all used by

OpenFox™. The fields, and the appropriate values, appear below.

Header Length This field is always set to 16 (hex 0010).

Function The functions supported are: (hex)

 0001 - Data Message, no ACK, Final Block

 0002 - Data Message, ACK requested, Final
Block

 0003 - Data Message, no ACK, More to Follow

 0004 - Data Message, ACK requested, More to

 Follow

 0011 - Positive ACK to data message

 0012 - Negative ACK to data message

 0021 - Request system status

 0022 - Status response

Validation The contents of this field are returned by OpenFox™.

Data Length This field represents the data length as an unsigned

 32-bit number.

 Please note that no single block may be larger than

 65,535.

Status The OpenFox™ uses this field as documented in the

 DMPP-2020 spec.

Destination The value is always set to hex 0001 on outgoing
messages,

 and ignored on inbound messages.

Keep Alive

The OpenFox™ uses the status request/response function to act as an idle line

timer. OpenFox™ will terminate a connection that has had no activity for 60

seconds. To prevent an idle connection from terminating, clients are expected

to issue a system status request message before 60 seconds of idle time. CPI

recommends sending this request every 45 seconds if no other traffic has been

sent during that time. The OpenFox™ will respond with a ‘system available’

status response and reset the idle timer for the connection.

Message Segmentation

To maximize resource efficiency at the central site and to manage a large

number of client connections the OpenFox™ system requires that messages
larger

than 65,535 bytes be segmented. The term segment and block are used

interchangeably. If a DSEO-2020 object is present in a message, it must be

completely contained within a single message segment. Please note that a

single message segment may contain multiple DSEO-2020 objects (so long as

their combined size is under the 65,535 byte limit). A message may be broken

into any number of segments, and each segment need not attain the 65,535 byte

maximum. If the function code for a data message requests an ACK, and is not

the final block, the next block should not be sent until the ACK for the prior

block is received. Likewise, after sending a final block requesting an ACK,

the next message should not be started until the ACK is received. If no ACK

is received for a data block within 60 seconds the connection should be closed

and a new connection attempted. Any partially completed message (some blocks

sent and ACK’ed but not all) should be resent in its entirety upon successful

establishment of the new connection.

Binary Objects

As documented above, OpenFox™ requires that all inbound and outbound objects

be wrapped in DSEO-2020 format. An object when present must be completely

contained with a single segment. The status field in the DMPP-2020 header

should reflect the content of the block. The two status codes used are:

 01 Message segment contains no object data

 05 Message segment contains at least one DSEO-2020 formatted
image

Please note that in the DMPP-2020 specification status code 01 states “Message

may contain binary object in Unisys format”. Since OpenFox™ does not support

Unisys formatted objects this code is used to indicate no object is present.

OpenFox™ will only scan segments for DSEO-2020 objects if they have the

status code set to 05. OpenFox™ will insure that all segments bound for

the peer have the status code set correctly, so the peer need not scan for

DSEO-2020 objects if the segment status code is set to 01.

Message Examples

The following are example messages taken from a live system TCP/IP trace.

First, we’ll look at a status request message. The OpenFox™ received the

following message from a client device:

 Offset Hex Data ASCII Equivalent

 -------- ----------------------------------- ------------------

 00000000 ff00aa55 0000001c 00100021 31363138
|...U.......!1618|

 00000010 00000000 00210001 55aa00ff |.....!..U... |

The message breakdown is:

 FF00AA55 Start Pattern

 0000001C Message length (total length of this data

 message)

 0010 Extended Header length (always 16 - hex 10)

 0021 Function - Request system status

 31363138 Validation Code - this will be returned (see

 response below)

 00000000 Data Length - this is zero for status messages

 0021 Status Code - ignored

 0001 Destination - ignored

 55AA00FF Stop Pattern

This message caused OpenFox™ to reset the idle timer for this connection, and

respond with the following message:

 Offset Hex Data ASCII Equivalent

 -------- ----------------------------------- ------------------

 00000000 ff00aa55 0000001c 00100022 31363138
|...U......."1618|

 00000010 00000000 00210001 55aa00ff |.....!..U... |

The message breakdown is:

 FF00AA55 Start Pattern

 0000001C Message length (total length of this data

 message)

 0010 Extended Header length

 0022 Function - Status Response

 31363138 Validation Code - echoed from the status

 request

 00000000 Data Length - this is zero for status messages

 0021 Status Code - Available and ready

 0001 Destination - always set to 1

 55AA00FF Stop Pattern

The next examples are a data message received from the client, and the ack

returned by the OpenFox™. First, the following message is received by
OpenFox™

(from a client device):

 Offset Hex Data ASCII Equivalent

 -------- ----------------------------------- ---------------

 00000000 ff00aa55 00000053 00100002 32313230
|...U...S....2120|

 00000010 00000037 00210001 464f5859 2e52512e
|...7.!..FOXY.RQ.|

 00000020 2a484152 52592e4f 4b4f4850 30303339
|*HARRY.INOHP0039|

 00000030 2e53442e 4c49432f 33413236 3739362e
|.SD.LIC/3A26796.|

 00000040 4c49592f 31393939 2e4c4954 2f504355
|LIY/1999.LIT/PCU|

 00000050 aa00ff |... |

The message breakdown is:

 FF00AA55 Start Pattern

 00000053 Message Length

 0010 Extended Header length

 0002 Function - Data message, ACK requested, final

 block.

 32313230 Validation Code

 00000037 Data length - length of the actual message

 data (from FOXY to LIT/PC).

 0021 Status Code - ignored

 0001 Destination - ignored

 464F thru 5043 Message Data (text)

 55AA00FF Stop Pattern

The OpenFox™ responds with:

 Offset Hex Data ASCII Equivalent

 -------- ----------------------------------- ------------------

 00000000 ff00aa55 0000001c 00100011 32313230
|...U........2120|

 00000010 00000000 00010001 55aa00ff |........U... |

The message breakdown is:

 FF00AA55 Start Pattern

 0000001C Message Length

 0010 Extended Header length

 0011 Function - Positive ACK

 32313230 Validation Code - echoed from the input
message

 00000000 Data length - zero

 0001 Status Code (meaningless)

 0001 Destination (always 1)

 55AA00FF Stop Pattern

The next two examples are a message generated by OpenFox™ and sent to a
client,

as well as the client's response. First, the following message was sent by

OpenFox™ to a client device:

 Offset Hex Data ASCII Equivalent

 -------- ----------------------------------- ------------------

 00000000 ff00aa55 000000b4 00100002 00000001
|...U............|

 00000010 00000098 00010001 464f5859 2e2a4841
|........FOXY.*HA|

 00000020 5252592e 4e434943 20202020 20202031
|RRY.NCIC 1|

 00000030 33363731 2031373a 33353a32 32204d52 |3671
17:35:22 MR|

 00000040 49203039 30313831 0d0a464f 58592020 |I
090181..FOXY |

 00000050 20202020 20303030 30392031 373a3335 |
00009 17:35|

 00000060 3a323220 30362f31 362f3230 30300d0a |:22
06/16/2000..|

 00000070 0d0a314c 3031464f 58592c4d 52494430
|..1L01FOXY,MRID0|

 00000080 39303138 300d0a30 4b304850 30303339
|90180..0K0HP0039|

 00000090 0d0a4e4f 20524543 4f524420 4c49432f |..NO
RECORD LIC/|

 000000A0 33413236 37393620 4c49532f 53440d0a
|3A26796 LIS/SD..|

 000000B0 55aa00ff |U... |

The message breakdown is:

 FF00AA55 Start Pattern

 000000B4 Message Length

 0010 Extended Header length

 0002 Function - Data message, ACK requested, final

 block

 00000001 Validation Code - should be returned in the

 client's ACK

 00000098 Data Length - from FOXY to 'CR''LF'

 0001 Status Code (meaningless)

 0001 Destination (always 1)

 464F thru 0D0A Message Data

 55AA00FF Stop Pattern

The client responded with the following acknowledgment:

 Offset Hex Data ASCII Equivalent

 -------- ----------------------------------- ------------------

 00000000 ff00aa55 0000001c 00100011 00000001
|...U............|

 00000010 00000000 00010001 55aa00ff |........U... |

The message breakdown is:

 FF00AA55 Start Pattern

 0000001C Message Length

 0010 Extended Header length

 0011 Function - Positive ACK

 00000001 Validation Code - returned from the OpenFox™

 output

 00000000 Data Length - zero

 0001 Status Code - ignored

 0001 Destination - ignored

 55AA00FF Stop Pattern

The examples represent the normal operation of a line. The two systems

exchange data messages, and during idle periods the first example of status

request/response is conducted.

Message ACKs

One final consideration that is not covered in the examples is that data

messages may be sent with a function code of "0001 - data message, no ACK,

final block". If the OpenFox™ sets this value in the function field, it is not

expecting an ACK to the message, and one should not be sent to OpenFox™.

Likewise, if a client device sets this value in the function field, OpenFox™

will honor it and not send an ACK. CPI recommends the use of the message
ACKs

for all standard user transactions.

Operator Identification

In order to comply with the CJIS Security Policy published by the FBI, the

OpenFox™ system supports the identification of device operators. This feature

is implemented through the use of the message header from the remote system.

The system will validate the User ID and report a security violation if the

User ID has not been configured or the user-id is not associated with the

incoming station.

Input Message Formats

Messages from the trusted server workstation to the OpenFox™ system will be

constructed depending on the destination. For this particular type of service

the OpenFox™ system will be configured to support a communications interface

called the ‘server’ and either one or all nodes behind the interface called

‘TDAC’ (Trusted Destination Address Code).

The header associated with input from these devices will be as follows:

 TDAC.Reference.UserID.

 Where:

 TDAC Is the name of the device from which the

 message is originating

 Reference Is a 10 character alphanumeric field

 UserID The user ID field

Message input from these devices will follow the NLETS Format and the NCIC
2000

Format as described below.

The NLETS Format

These messages include all of the valid NLETS MKE's, as well as any State

specific MKE's for which the processing rules are identical to those of NLETS.

They will follow the NLETS standard message format except that the TXT

statement will be optional. The input message must contain a list of the

destinations in order for the system to route the messages.

Following is a description of the NLETS format:

 [header.]MKE.ORI.Destinations.Control-Field.TXT(optional) and
text.

 Where:

 MKE The MKE field is a valid NLETS message key must be configured

 in the system, if not an error message will be returned to the

 input station indicating 'invalid MKE'. In addition, the

 incoming session will be checked to see if it has the authority

 to execute the message key. If not an error message will be

 generated back to originating station indicating 'not

 authorized to use MKE'.

 ORI The ORI must be the valid State ORI assigned to the

 input station. If the ORI is not valid or if it is not

 assigned to the originator an error will be returned.

 DEST The destination field is variable in length, it must be

 composed of a valid two character State code or a valid

 destination depending on the message type. Multiple

 destinations may be specified, in which case they must be

 separated with a comma. The entire field must always be

 terminated with a period.

 CTL-FLD The control field is an optional field. If present the

 first character must be an asterisk and must be followed by

 exactly 10 additional characters. If present the field must be

 terminated with a period, if not present nothing must be sent.

 TXT This is an optional field and is not required.

 TEXT This is the actual text of the message, it is normally

 composed of Message Field Code descriptors and their associated

 data. Each field except the last must be terminated with a

 period.

 Examples:

 [header.]RQ.IN0000000.IL.*1234567890.LIC/ABC123.LIY/2000.L
IT/PC

 Where:

 RQ Message key - registration query for out of State

 IN0000000 The ORI

 IL The destination State

 *1234567890 The optional control field

 Text The text of the message comprises the remainder of the

 message

The NCIC 2000 Format

These messages will include all of the valid NCIC and In-State Hotfile MKE's.

They will be routed to the proper destination even though a destination field

is not provided. As is the case with NLET formatted messages, these messages

can also generate transactions to other data bases depending on the specific

MKE configuration. All valid State Hotfiles database and NCIC 2000

transactions will follow this format. The format of the messages are described

below:

 [header.]MKE.ORI.text

 Where:

 MKE The MKE field must be a valid NCIC message key, if not

 an error message will be returned to the input station

 indicating 'invalid MKE'. In addition, the incoming

 session will be checked to see if it has the authority

 to execute the message key. If not an error message

 will be generated back to originating station

 indicating 'not authorized to use MKE'.

 ORI The ORI must be the valid State ORI assigned to the

 input station. If the ORI is not valid or if it is

 not assigned to the originator an error will be

 returned.

 Text The text portion of the message keys will comply with

 NCIC standards.

 Example:

 [header.]QV.IN0000000.LIC/ABC123.LIS/IN

 Where:

 FOXY The DAC name

 QV The NCIC message key - query vehicle

 IN0000000 The ORI assigned to the input station

 Text The remainder of the message is text: LIC/ABC123.LIS/IN

Output Message Formats

This section will describe output message formats to any stations utilizing the

DMPP 2020 protocol.

The processing header will be used by the receiving system to perform

processing related to grouping and displaying the messages. The format of the

processing header is as follows:

 TDAC.Reference.Source.MKE.Date/time.

 Where:

 TDAC Is the name of the device to which the message is

 addressed

 Reference Is a 10 character alphanumeric field as

 entered with the original request, it will contain the

 constant UNKNOWN for responses for which the value is

 not known or the constant UNSOL if the message is an

 administrative message.

 Source This field will consist of the OpenFox™ mnemonic

 associated with the source of the message.

 MKE This is the response MKE, wherever possible this will

 be the same as the request message key, AM for

 administrative messages, SM for notifications, ER for

 error notices.

 Date/Time This will be the date and time that the message

 is being output by the switch, it will have the format

 YYYYMMDDHHMMSSxx

 Where:

 YYYY The 4 character numeric year

 MM Two character numeric month

 DD Two character numeric day

 HH Two character numeric hour (military format)

 MM Two character numeric minute

 xx Two character numeric field representing hundredth of

 a second

